SIM PROJECT PRELIMINARY INSTRUMENT SYSTEM REQUIREMENTS REVIEW (PISRR)

Mission System 17-18 March, 1998

S. S. Dallas Mission System Manager

CONTENTS

- FUNCTIONAL OVERVIEW
 - OBJECTIVE OF SYSTEM
 - MISSION SYSTEM ELEMENTS
 - CONCEPTUAL DESIGN
 - > MISSION DESIGN
 - > END TO END INFORMATION SYSTEM
 - > MISSION OPERATIONS SYSTEM
 - > GROUND DATA SYSTEM
 - > LAUNCH VEHICLE SYSTEM
 - REQUIREMENTS FLOWDOWN TREE
- REQUIREMENTS
 - KEY REQUIREMENTS ON SYSTEM
 - KEY DERIVED REQUIREMENTS
 - TECHNICAL READINESS VERIFICATION (TRV) FLOWDOWN
 - CONCERNS
- CONCERNS SUMMARY
- CONCLUDING REMARKS

FUNCTIONAL OVERVIEW OBJECTIVE OF SYSTEM

- The Mission System consists of the personnel and facilities necessary for the design and conduct of the mission.
- Mission System Functions:
 - Mission Design
 - Navigation Design
 - End-to-end Information System Design
 - Ground Data System Design and Development
 - Mission Operations Design and Development
 - Launch Vehicle Selection and Procurement
 - ATLO Support
 - Execution of the Flight Mission

FUNCTIONAL OVERVIEW MISSION SYSTEM ELEMENTS

SPACE INTERFERDMETRY MISSION

FUNCTIONAL OVERVIEW CONCEPTUAL DESIGN

Mission Design

Earth-Trailing Solar Orbit

CHARACTERISTICS

ONE YEAR OBSERVATION PLAN

C3	0.4 Km ² /Sec ²	Grid Observations	25.6 %
Occultations	None	Astrometric Observations	49.4 %
5-yr Radiation Dose	20 Krads	Imaging	6.1%
Launch Vehicle	Delta III or EELV	Slewing	5.9 %
Propulsion System	Mono-Prop	Calibration/Eng	10.0%
Delta-V Req'd?	No	Total Observing Efficiency	81.1 %
Orbit Determination	Range/Doppler		
Earth-S/C Range	Up to 95 Million Km		
Launch Period	June, 2005		
Mission Duration	5 Years		

SPACE Interferometry Mission

FUNCTIONAL OVERVIEW CONCEPTUAL DESIGN

EndTo End Information System

SPACE Interferometry Misson

FUNCTIONAL OVERVIEW CONCEPTUAL DESIGN

Mission Operations System

SPACE INTERFEROMETRY MISSION

FUNCTIONAL OVERVIEW CONCEPTUAL DESIGN

Ground Data System

SPACE Interfer Daethy Mission

FUNCTIONAL OVERVIEW CONCEPTUAL DESIGN

Launch Vehicle System

Delta III

First Stage: Liquid Oxygen/ RP-1

(Kerosene),

Rocketdyne RS-27A Main

Engine,

Nine Strap-on Solid Rocket

Motors

Second Stage: Cryogenic (O₂/H₂)Pratt &

Whitney RL10B-2 Engine

Pay. Fairing: 13.1 Foot Diameter

Injected Mass:2700 Kg into an Earth

Trailing Orbit

First Flight: 2nd Quarter, 1998

SPACE INTERFERIOMETRY MISSION

FUNCTIONAL OVERVIEW REQUIREMENTS FLOWDOWN TREE

SPACE Interferometry Mission

REQUIREMENTS / TRV

- REQUIREMENT: PSRD #1645
 - Commands and sequences for the following mission events shall be developed, tested, and verified prior to launch.
 - > Launch, Deployment, and Calibration Sequences
 - > Representative Astrometric, Imaging, and Nulling Observing Sequences
 - > Safing and Fault Recovery Sequence
- KEY DERIVED REQUIREMENTS:
 - The MOS shall develop the flight procedures and sequences required.
 - The GDS shall be fully developed and tested for flight prior to launch. This includes processing of an autonomous tile observation by the SIM Science Data Center.
- TRV REQUIRED: STB-3 and ATLO
- CONCERN:
 - Availability of STB-3 prior to ATLO and Flight Hardware during ATLO for testing the GDS/MOS.

REQUIREMENTS / TRV

- REQUIREMENT: PSRD #1672
 - The MOS and EEIS shall be capable of generating (excluding planning) and validating all command sequence products including real-time commands, nominal science sequences, calibration sequences, reconfiguration sequences, and parameter updates within the constraints of 1 operator, 1 workstation, and 2(TBR) hours to complete the processes.
- KEY DERIVED REQUIREMENTS:
 - The GDS shall be highly automated.
 - The MOS shall be highly automated.
- TRV REQUIRED: STB-3 and ATLO
- CONCERN:
 - Availability of STB-3 prior to ATLO and Flight Hardware during ATLO for testing the GDS/MOS.

REQUIREMENTS / TRV

- REQUIREMENT: SRD #tbd
 - The Navigation Team shall provide a one-sigma RSS velocity reconstruction knowledge of 4 mm/sec.
- KEY DERIVED REQUIREMENTS:
 - The S/C System shall carry an X-band transponder capable of providing two-way coherent X-band ranging and doppler.
 - A minimum of three navigation cycles per week from the DSN HEF stations shall be scheduled. A navigation cycle consists of a two-hour pass from each of the three DSN HEF stations within one day.
- TRV REQUIRED: Covariance Analysis
- CONCERN:
 - More than three six-hour tracking passes per week may be needed towards the end of the mission with potential conflicts with other missions.

CONCERNS SUMMARY

 Availability of STB-3 prior to ATLO and the flight hardware during ATLO for testing of the GDS and MOS.

CONCLUDING REMARKS

- All Mission System requirements can be met assuming proper GDS and MOS testing.
- The key areas of technology development are GDS/MOS automation and science data processing.

